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TRANSVERSE STABILITY OF A LIQUID JET IN A COUNTERFLOWING 

AIR STREAM 

V. M. Entov and A. L. Yarin UDC 532.521:532.522 

The development of small perturbations which bend a liquid jet in a counterflowing 
air stream is analyzed here. It is demonstrated t h a t  the most dangerous perturba- 
tions of the jet axis have a spatial distribution, and the increment of perturba- 
tion buildup is calculated. 

Straight Jets of a liquid moving in air at sufficiently high velocities are unstable 
against transverse perturbations [1-4]. As a consequence, they acquire a waviness and even- 
tually break up. The problem of dynamic action of an air stream on the a priori unknown 
surface of a jet with a flow also yet to be determined is a very difficult one and, for this 
reason, only the first steps have so far been taken toward a theoretical description of it 
[2, 5, 6]. 

Here will be analyzed the stability of a straight laminar jet of a viscous liquid 
against small long-wave spatial perturbations. The analysis will be based on the equations 
of dynamics of thin liquid Jets [7], which in the case of small perturbations are 

av~ of +f0 =0, 

Of 0 av a :(p, + Q) + q, 
a-T = 

aK aM 
P at as + ~ x Q ,  

K ='= l (nQ. -/r- bQb), [2. --= - -  V b .s -- xVn,  ~2 b = Vn ,s - -  >~V b, 

M = 3 V l  in (Q,, ,, - -  • + b (f4 ,, + • - -  ~zlaol kb + Mt,  

av. O2a 

( l)  

In the selected reference system the unperturbed jet remains at standstill while the 
air stream moves along its axis. The cross section of the jet is assumed to be circular, 
without body forces and rotation of the liquid about the jet axis (~T = 0). 
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Perturbations of hydrostatic pressure in the surrounding air are transmitted to the 
liquid in the Jet. Taking this into account gives rise to the Mt terms and the P= term in 
the respective expressions for the moment of stresses and the longitudinal force in a cross 
section. We will calculate here the moment of stresses M~ as well as the forces acting on 
the Jet from the surrounding air, all needed for determining the transverse stability of such 
a Jet. It ought to be noted that, owing to the inequality 0x<<P, only terms of the order 
0xU~ contribute substantially to the determination of the dynamic action of air on the Jet. 
The linear density of the moment of external forces m does not appear in the equation for 
the angular momentum, because in this case, it will be demonstrated here, m = 0. 

Projecting the equations for the momentum and angular momentum (i) on the normal, the 
binormal, and the tangent to the Jet axis, also considering the smallness of the components 
of velocity V and angular velocity ~ of the liquid, we obtain 

0V~ 20___aa + a o - - = O ,  
Os 

av, a2v~ aa asa oP, 
pro -~- : 3Fro -os- F- + aos --as -k afo ~ -  -6 ~s  + q+' 

Pro OV~ = 0Qn xQ b + aaoko~ -6 qn, 
Ot Os " 

Pro OV---b" : O-~Qb + xQn -~- qb, 
Ot Os 

- -  pI OzVb pl O OMn xMb- -  Qb, 
OsOt ~ -  (~V.)= Os 

pl " OzV" pl 0 OMb q_ ~M. q- Q.. 
asat ~ -  (• = as 

(2) 

Here are retained only terms of first-order smallness, with the projections of those 
equations on the tangent T being identically equal to zero. 

The first two equations in system (2) describe the buildup of small axisymmetric pertur- 
bations in the Jet, taking into account the effect of the air stream, and can be solved inde- 
pendently of the remaining equations (the increment 7t of buildup of axisymmetric perturba- 
tions has been determined by Weber [5]). Transverse perturbations of the Jet axis are here 
insignificant. On the other hand, the remaining equations in system (2) describe small 
transverse perturbations of a liquid jet with variations of the radius disregarded. These 
perturbations are characterized by an increment ~, for which a corresponding dispersion 
equation will be derived here subsequently. When the maximum increment 7 is much larger 
than the maximum increment 7t, then transverse perturbations build up much faster than axi- 
symmetric perturbations. In this case the radius of the jet can be assumed to remain con- 
stant. 

We now proceed to determine the increment of buildup of small transverse perturbations 
in a jet of constant radius. First of all we calculate the aerodynamic force q and the mo- 
ment Mz. For this we use the theory of motion of slender bodies <"fish'!) [8-10]. 

We introduce a Cartesian system of coordinates Ot~q~, where the ~ axis coincides with 
the axis of the unperturbed jet and moves together with it at the velocity Uo in the ~ = --~ 
direction. Let us parametrize the jet axis just as in study [7], namely ~ = s. The equa- 
tions of perturbations of the jet axis will be 

= H ( s ,  t), I c E ( s ,  t), (3) 

where H and Z, the displacements of the axis in directions 0~n and 0t~, respectively, are 
of the flrst-order smallness. Displacements of higher-order smallness will be disregarded. 
The equation of the Jet surface is, moreover, 

(~ -- H) 2 + 65 -- Z) 2 = a2o �9 (4) 
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The gas surrounding the jet will be regarded as an ideal and incompressible one, and its 
motion to be potential flow. The linearity of the problem allows us to represent the poten- 
tial as a sum 

q , = U o s +  ~, 

where the perturbation potential ~ satisfies the equation 

a2~ + a2~ = 0, 
all 3 a~ 3 

(5) 

(6) 

with the necessary degree of accuracy, inasmuch as q,ss<<~,~n, and @ ss <<@ ,~[ :in the case 
of long-wave perturbations of a slender jet. In other words, as is usually done in the theo- 
ry of streamlining of thin bodies, the perturbed motion can be regarded as two-dlmensional 
in every section normal to the velocity of the counterflowing stream [8-10]. At the jet sur- 
face there must be satisfied the condition of impermeability, which in the linearized form 
becomes 

(o - -  H) v + g - -  z) w -- (7 - -  H) V~ + ( ~ - -  Z) V~, 

aq~ aq~ , ,  * 
v =  - - ,  w----- - - ,  } n = D H ,  Vr = D Z ,  

an at 
r 

a 0 
D =  Ot + U~ Os " 

(7) 

Furthermore, perturbations must vanish at infinity 

~-+0, 03+ ~3_+ ~. (8) 

Changing in Eqs. (6),(8) to polar coordinates r, 0 (n--H = r sin O,~ and Z = r cos O), we 
have the potential problem 

Or 3 r ar r 3 003 

0q~ = V , ~ s i n 0 + V ~ c o s 8 ,  r = a o ,  
Or 

q~---~ O, r - +  oo. 

(9) 

The solution to problem (9) is 

---- ~V~sin0 + V~cos0 )  =-- cp r ( ' i  - -  H y  + (~ - -  Z) 3 ( 1 0 )  

Inserting the potential defined by expressions (5) and (I0) into the Lagrange-- Cauchy inte- 
gral yields, after terms of higher-order smallness have been discarded, the pressure distri- 
bution over the jet surface 

P = P| + Pl [(n- H) DV~ + (~- Z) mv~]. (ii) 

With the aid of relation (ii) we find the linear density of external forces on the jet 

O o 

q = - -  p~U5 [o ( j t t , , ,  + kZ ,~)  (12) 

and also the moment 

Mi = piU~ klb .  (13) 

The linear density of the moment of external forces m is in this case obviously zero, since 
the direction of these forces is along the radius-vector in a cross section of the jet. 
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Therefore, all quantities in the equation of dynamics (2) of a liquid Jet are given. With 
the aid of Eqs. (i) and expression (13), moreover, we find the components of the vector M 
(moment of stresses) in a Jet section 

aV,, ] Nl,= = 3FI  azvb o, (xVn) - -  x + xzV b , 
as" as as 

[ ( ) M b = 3 F I  O2V'= a aVb --  xzV ~ lk 1--  P#oU2o 
as'- as (xVb)--x a-s- ao ~ " 

(14) 

The llnearity of the problem allows us to consider only spiral perturbation of the jet axis 

H = A exp (~t) cos (Xs/ao), Z = B exp (?t) sin (xs/a.). 

Its curvature and twist are, accordingly, 

k = (%/ao) 2 exp ('it) [A s cos z (Xs/ao) + B'. sin ~ (xs/au)] l/3, 

x = xABaot [A 2 c o s  z (xS/ao) + B z sin'. (xS/ao)] -t. 

(15) 

(16) 

Using the linearized kinematic relation between velocity U of a point s on the Jet axis 
and velocity V of a liquid particle at that point [7], viz., 

U=V--T(V.i), U=JH.+kZ,,, 

we obtain with the aid of expressions (15) 

V.  = -- y exp (~,t) [A 2 cos 2 (Xs/ao) + B'. sin'. (Xs/ao)] '/~, 

(17) 

Vb = 0. (18) 

Projecting relation (12) on a normal and a binormal to the jet axis yields, with the aid of 
expressions (15) and with the necessary accuracy, the relation 

q. =--PtU~foXZao~exp(~t)[AZcosZ(xs/ao)+B'.sin2(xs/~)l 1/2, qb = O. 
(19) 

Inserting expressions (16), (18), and (19) into the last four of Eqs. (2) and into expres- 
sions (14) yields the equations for small spatial perturbations of a slender liquid Jet 

av , ,  oQ,, _ xQ b + aao=k  + q,, = 0 ,  -Pf~ TF + a7 

o~.__~b + x Q .  = O, 
as 

- -  pl azV" OMb 
am + T  +Q"- -  ~ 

p/x av. _ x M  b _ (~b = o ,  
at 

OzV. Mb + x2V. + =k ( 2 )  a---~-= '3FI ~ I - -  o,~Uoo~ " 

(20) 

Moreover, 

m~ = o. (2l) 

The equations of Jet deflection in a plane are obtained from Eqs. (20) for • = Qb = O, 
with the second and the fourth of these equations becoming identities. After M b has been 
determined from the last of Eqs. (20), the fourth of Eqs. (20) yields the projection of the 
shearing force on a blnormal 
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Qb=pxlOV"--3FxlldzVnat \1 as 2 - --xzV.) + r (__ao  1-- ptaoU2~ 

The third of these equations yields 

(22) 

Q. = pl OZVn 311I [ ~V,, O 1 al ( piaoU2o 
oso---7 - [ ~ as (xW,,) + To ~ 

oA 
Os 

(23) 

Inserting expressions (22) and (23) into the second of Eqs. (20), with relations (16) and 
(18) taken into account, results in an identity. The first of Eqs. (20), together with 
expressions (22) and (23), yields 

av. ( asv. 
-- Pro - ~  + pl as'Ot x2 OV~ ~ c)t ]+31xl[~Z( c)2Vnc)s z __ __ • n ) -- 

(24) 

Os~ + ,gs - - f  - -~  1 - -  ~ \-~s~ - -  kx2 + ~r + q .  = O. 

Relations (16), (18), and (19) reduce the resulting expression to 

[ ( ) 3~xsI U 2 c~lx3 ( [A2cosZ(xs/ao)+BZsin2(xs/ao)]z ~z P/ga~ +P/Xao + --a 3 ?+~X--Pl oZmoX-- a~- ptaoU~= ) t=0" (25) 

From here we obtain the dispersion equation for small perturbations of a liquid jet 

r'+ 4 pa~ v +  p~ pa~ ] (26) 

Here have been retained only the principal terms when X + 0, inasmuch as the long-wave approx- 
imation is considered. 

The dispersion equation (26) for velocities 

G% > U~ = (=/P#o)'/2 (27) 
has a root y > 0 and, therefore, transverse perturbations of the jet are unstable. The 
condition of instability (27) follows from the results of another study [6] pertaining to a 
jet of a nonviscous fluid. When inequality (27) holds true, then Eq. (26) yields the dimen- 
sionless wave number X, of the perturbation which builds up fastest and also its largest 
increment 7* 

[ 8 pa~ ( ~)],/6 ~0p,U~_~),/3 (28) X,= 9 ~2 ptU~--- , 7 .=  (3~pa~)l/3 

When the action of surface tension is negligible as compared to the dynamic action of air 
causing breakup of the jet, then the maximum increment of buildup Y** of axisymmetric pertur- 
bations [5] is much smaller than y, under conditions of the inequality 

# (pa~ p,U~)-' ~ 1. (29) 

Accordingly, variations of the radius on a jet cross section can be disregarded in an 
analysis of small transverse perturbations in a jet of sufficiently viscous fluids. It is 
exactly in such a jet where increment (28) characterizes the transverse perturbation which 
builds up fastest. We will note that the phenomenon of instability of transverse perturba- 
tions was discovered by Henlein [i] during experiments with jets of castor oil under condi- 
tions satisfying inequality (29). 

Since breakup of a jet discharging from a nozzle at a velocity Uo is caused by the per- 
turbation which builds up fastest and it occurs when the maximum deflection of the jet axis 
reaches the order of magnitude of X,, we find the length of the jet prior to breakup to be 
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[ 
L = A [iPiU~--~/a") 2j  " ( 3 0 )  

with A = in(l,/~o). 

The dispersion equation (26) determines the increment of plane as well as of spatial 
perturbations of the jet axis. Consequently, both build up at the same rate and breakup of 
a jet should have a spatial pattern. Photographs of a jet in two projections [2] confirm 
this conclusion. 

In conclusion, we will make reference to indications which suggest that disregarding 
the viscosity of air around a jet leads to an overestimate of pressure perhurbations at the 
jet surface [2, ii]. It can be taken into account, as has been done in the latter study [ii], 
by replacing expression (ii) with the expression 

P = P| -5 Cp~ [(~ -- H) DV~ -5 (; -- Z) DV~], (31) 

where C (0 < C < i) is an empirical constant. In all relations which follow from expression 
(ii), accordingly, 0, must be replaced with the product CO, and one of the consequences will 
be, for instance, a higher threshold velocity U~. 

NOTATION 

V, velocity of the liquid on the jet axis, with projections Vn, Vb, and V T on, respec- 
tively, the normal n, the binormal b, and the tangent T to the jet axis; ~, angular velocity 
of a liquid particle in a jet cross section; M, moment of stresses in a jet cross section 
about its center; Q, shearing force in a cross section; PT, longitudinal force in a cross sec- 
tion; q, a linearly distributed force (aerodynamic force in this case) acting on the Jet; 
m, linear density of the moment of external forces; U, velocity of point s on the jet axis; 
s, a parameter of the jet axis; t, time; f, area of a jet cross section (f = ~a~), fo and ao, 
unperturbed state; I, moment of inertia of an unperturbed jet cross section (I = n/4" a~); k, 
curvature of the jet axis~ M, twist of the jet axis; ~, dynamic viscosity of the liquid; a, 
coefficient of surface tension in the liquid; 0, liquid density; 9~, air density; Uo, velocity 
of the air stream (or the discharge velocity of the jet); $, n, ~, axes of Cartesian coord- 
inates with the respective unit vectors i, J, k; p, air pressure; p~ pressure at infinity; 
A and B, constant coefficients; X, dimensionless wave number of transverse perturbations; 
y and y,, increments of buildup of, respectively, transverse and axisymmetric perturbations 
(asterisks denote thief maximum values); %,, wavelengthof the perturbation which builds up 
fastest; ~o, maximum deviation of the jet axis from a straight llne at time t = 0; and L, 
length of the jet prior to breakup. 
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